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Abstract

The Kirchhoff transformation is an effective means for dealing with temperature dependent conductivities. In
general numerical applications, however, the use of this approach will produce non-linear discrete equations,
which can be costly to solve. This paper introduces a local Kirchhoff approach for approximating the conductivity
terms in the discrete equation. This approach results in an efficient solution in terms of temperature alone.
Application to a problem with rapidly changing conductivity shows that use of high-order numerical integration
in the conductivity approximation leads to very accurate predictions. © 2001 Elsevier Science Ltd. All rights

reserved.

1. Introduction

In the numerical solution of diffusion-controlled heat
and mass transfer problems an area that often leads to
difficulty is the treatment of conductivities that are
strong functions of the dependent variable. In the con-
text of phase change problems, with a sharp front and a
discontinuous change in conductivity, e.g., the melting
or solidification of a pure material, a number of nu-
merical schemes have been proposed [1,2]. Voller and
Swaminathan [2] develop a scheme based on a local
Kirchhoff transformation [3]. The objective of this short
note is to extend the local Kirchhoff approach intro-
duced by Voller and Swaminathan [2] to a case where
the conductivity is a continuous but strong function of
the dependent variable. Such behavior can be associated
with phase change problems that exhibit so-called
“mushy” regions, e.g., the solid-liquid dendritic region
in a binary alloy [4] or unsaturated moisture migration
through soil [5].
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2. The local Kirchhoff method

Heat conduction is chosen as an example diffusion
process to illustrate the method development. The gov-
erning equation for a transient heat conduction process
in a given volume is

pc%—{zV-[K(T)VT]+S, (1)

where suitable boundary conditions are applied at the
surface of the volume, p is the density, ¢ is the specific
heat, K(T) is a temperature-dependent conductivity, and
S is a source term. Any problems that may occur due to
a rapidly changing or discontinues K (7') can be bypassed
by using a Kirchhoff transformation [3]

o= [ Keoae )
By the Leibniz rule,

V- [KVT] = V29, 3)
so that Eq. (1) can be written as

pc%—{zvz¢+& (4)
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Any volume-based discretization of Eq. (4) can be
written in the general point form

Zai(¢P —¢.) +SpTp = Sc, (5)

i

where the summation is over the nodes that “neighbor”
node P (see the section of the 2-D finite element grid in
Fig. 1), the g; are constant coefficients, with values de-
termined by the nature of the discretization and the
order of approximating interpolation used. The tran-
sients, source terms and boundary conditions are rep-
resented by the source coefficients Sp and Sc in Eq. (5).
The obvious problem in using Eq. (5) is that it is non-
linear and, depending on the form of K(T'), considerable
work may be required to solve it. In cases where the
form of K(T) leads to an “awkward” definition of the
Kirchhoff variable the alternative direct discretization of
Eq. (1), ie.,

ZaiKPﬂ'(TP —T)+ SpTp = Sc, (6)

may be a more attractive option. In Eq. (6) the term Kp_;
is an appropriate average value of K(T') controlling the
heat transfer between node P and its neighbor node i. A
direct equivalence between Eqgs. (5) and (6) can be made
on noting that if s is the unit vector in the direction of
the line joining node P to node i
d¢ /dT

Kp,,' = E a . (7)
With this definition of Kp_; a solution of Eq. (6) will be
equivalent to solving the Kirchhoff form in Eq. (5). The
advantage of this local application of the Kirchhoff
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Fig. 1. Examples of a finite element and finite difference grid.

Table 1
List of integration rules for use in Eq. (12)

transformation is that, if an appropriate discrete form of
Eq. (7) is used, there will be no ambiguity in the treat-
ment of K(7T). A central difference approximation of Eq.
(7) is

:¢P_¢i
Tp—T;°

Kp_; )
In a case where K(7) is discontinuous at a fixed tem-
perature (scaled to be T =0) with constant values
(K =K if T < 0and K = Kjq if T > 0) on both sides of
the discontinuity Eq. (8) becomes
 KTp — KT,

K,,'— 5 9
A e ©)

which is the “state of face” conductivity proposed and
tested by Voller and Swaminathan [2] for solid-liquid
phase change problems that exhibit a discontinuity in
the conductivity at the phase change temperature. In a
case where K(7) is continuous but undergoes rapid
changes Eq. (8), with reference to the definition of the
Kirchhoff transformation in Eq. (2), can be written as

[ K(©&)de

K*i:
d T, - T,

(10)
Clearly a direct evaluation of the integral in the nu-
merator of Eq. (10) can be made. An alternative is to use
numerical integration and approximate the numerator
as

Tp

| K(Odi~ [T, - T] Y wiK(g)), (11)
where w; are the weights and g; are the integration
points in the interval {7, 7;}. In this way

Kpi=Y wiK(g)). (12)

The use of Eq. (12) in Eq. (6) is the main result in this
paper. Its use allows for a direct temperature-based
solution of the governing diffusion equation which treats
variations in K(7) at the level of accuracy offered by the
Kirchhoff transformation. Specific forms of Eq. (12),
based on the various integration rules, are listed in Table
1; the accuracy of the approximation controlled by the
order of the integration rule used.

Integration scheme Integration points

Integration weights

Mid-point g = % wp =1

Trapezoidal g =-Tp, &=T w=3% w=1

Two-point Gauss g :?—%@Jr%, o :%@Jr% w=1% w=1
Three-point Gauss g1 :77?%_"%’ g =1t g;zﬁﬂ’z’f’ﬁ-% Wi =5, wm=35, wm=3
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3. A test problem

The key features of the proposed approach can be
sufficiently demonstrated by considering the following
steady one-dimensional heat diffusion problem

d dr
— — | = <x<
dx{K(T)dx} 0, 0<x<l (13)

with 7(0) =0, T(1) =2 and the conductivity specified
by
1

K=177 (14)

a function which is plotted in Fig. 2. An analytical
solution for this problem can be readily obtained in
terms of the Kirchhoff transformation

¢ =1.041x (15)

from which 7'(x) can be determined by inverting
T
o= [ K@)
0
an-!
)V (72 VAT )

3 12
tan '(27 —v/3) /3 5
+T+EIH<T +\/§T+l>
-1
| tan (22‘4—\@)' (16)

A numerical solution of Eq. (13) has the point form
(see Fig. 1)

KP*PV(TPfTW)+KP7E(TP7TE):0~ (17)

A standard treatment of the conductivities in Eq. (17)
could use a central difference approximation

K(Ty) + K(Tp)

KP*W = 2 ’

(18)
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Fig. 2. Plot of conductivity against temperature.

which is the scheme that will result when a trapezoidal
rule is used in Eq. (12) (see Table 1). According to the
work presented here a more accurate approximation will
result if a higher-order integration rule is used in Eq.
(12), e.g., a two-point Gauss,

71 Tp—Twl TP+TW
for e (P )

Tw —Tp 1 Tp + Ty
k(TR LB

With reference to Fig. 3, in using a 11-node numerical
solution, there is a clear improvement, in terms of
comparing with the analytical solution, when Eq. (19) is
used in place of Eq. (18) to approximate the conduc-
tivity. This is confirmed by plotting the relative errors

T(x)

P

%Error = 100’1 - (20)

for each of the integration schemes listed in Table 1, see
Fig. 4. Basic approximate schemes for the Kp_; terms
based on a central or mid-point averages are clearly
inferior with errors well above 1% and approaching a
maximum above 10%. On the other hand, the use of
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Fig. 3. Comparison of central difference and two-point Gauss
approximations with analytical solution.
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Fig. 4. Log of relative errors using each of the approximation
schemes in Table 1.
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more accurate integration schemes (e.g., two-point or
three-point Gauss) will reduce the error well below 1%.

When the conductivity is a rapidly changing function
of space, depending on the location of node points, one
could argue that a geometric mean

0.5 N 0.5 }1
K(Tw)  K(Tp)

Kp w = [ (21)
would be a good approximation for the average con-
ductivity. As noted by Voller and Swaminathan [2],
however, this form of approximation is not suitable
when K is a function of the dependent variable. To
confirm this the relative errors arising from a 11-node
solution using the geometric approximation in Eq. (21)
is also plotted in Fig. 4. It is noted that very large errors
~100% occur when this approximation is used.

4. Discussion

In a numerical solution the obvious way of dealing
with a variable conductivity is to employ a central dif-
ference approximation for K(7). In cases where K(7)
changes rapidly or is discontinuous such an approxi-
mation may suffer from loss of accuracy. An alternative
approach in this situation is to use a Kirchhoff trans-
formation. This will lead to a high accuracy in the
treatment of K(7) but its implementation could be
awkward and require a costly inversion of the trans-
formation for the treatment of sources, transients, and
boundary conditions. This paper shows how a local
application of a Kirchhoff transformation can retain the
directness of the first method and, if high-order nu-
merical integration is used, approach the accuracy of the
second.

In using the local Kirchhoff approximation (Eq. (12))
in Eq. (6) three key points to note are:

1. When a trapezoidal integration rule is used the
method will default to a central difference scheme

for K(T).

2. The approach is applied after the calculation of the
diffusion coefficients. In a code where the user can
gain ready access to these coefficients — initially ob-
tained by simply assuming a constant K =1 in the
coefficient calculation sub-routine — this approach
may be quite convenient. In an iterative solution this
will only require a recalculation, at each iteration, of
the conductivities Kp_; and not the diffusion coef-
ficients, a;.

3. In a case where a central difference approximation
is of sufficient accuracy, an application of the local
Kirchhoff scheme will result in a final discretization
scheme different from, and based on the analysis pre-
sented here, more accurate than a conventional
scheme that uses a central difference approximation
for K at the element integration points (e.g., the
mid-face points in a control volume finite element
scheme) directly in the calculation of the diffusion co-
efficients.
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